terça-feira, 30 de dezembro de 2008

Números perfeitos

Os divisores do número 28 são 1, 2, 4, 7, 14 e 28. Excluindo-se desse conjunto de divisores o número 28, os que sobram, ou seja, 1, 2, 4, 7 e 14, são chamados de divisores próprios do número 28, portanto:

Os divisores próprios de um número inteiro e positivo são todos os divisores desse número diferentes do próprio número.

 

Ainda no caso do número 28, observe que a soma de seus divisores próprios, 1 + 2 + 4 + 7 + 14 , vale 28. Quando issso ocorre, dá-se a esse número o nome de número perfeito, logo:

Número perfeito é aquele número inteiro e positivo cuja soma dos divisores próprios é igual a esse número.

 

Além dos números perfeitos, existem também as denominações de números deficientes e números abundantes.

Um número é deficiente quando a soma de seus divisores próprios é menor que o número. Um exemplo de número deficiente é o 15. Os divisores de 15 são 1, 3, 5 e 15. Seus divisores próprios são 1, 3 e 5. Observe que 1 + 3 + 5 = 9,  que é menor que 15. Logo, o número 15 é um número deficiente.

Se, por outro lado, a soma dos divisores próprios de um número é maior que esse número, o mesmo é chamado de número abundante. É o caso do número 18, que tem como divisores os números 1, 2, 3, 6, 9 e 18. A soma de seus divisores próprios vale 21, portanto maior que 18.

Os quatro primeiros números perfeitos: 6, 28, 496 e 8128, já eram conhecidos na Grécia Antiga e Euclides (360 a.C. — 295 a.C.) mostrou ser possível obtê-los pela fórmula :

2p – 1. (2p – 1)

na qual p é um número primo e o segundo fator, (2p – 1), deve resultar em um número primo.

De fato, a fórmula se apresenta verdadeira para os quatro primeiros números perfeitos, veja:


para p= 2 –> 21(22 - 1) = 6
para p = 3 –>  22(23- 1) = 28
para p = 5 –> 24(25 - 1) = 496
para p = 7 –> 26(27 - 1) = 8.128

 

Era de se esperar que com essa fórmula fosse possível obter qualquer número perfeito. A linha de raciocínio era a seguinte :

– se ela nos fornece o primeiro número perfeito (6) ao utilizarmos nela o primeiro número primo (p = 2);

– se ela nos fornece o segundo número perfeito (28) ao utilizarmos o segundo número primo (p = 3);

– então,  será de se esperar que o quinto número perfeito seja obtido ao utilizarmos nela o quinto número primo (p = 11). 

Porém, nesse ponto, a fórmula falha, uma vez que para p = 11, o segundo fator da fórmula fica:

211 - 1 = 2047

e 2047 não é um número primo, visto que é o produto de 23 por 89. (Vale relembrar que o segundo fator da fórmula, deve resultar em número primo).

Brinque um pouco com o joguinho a seguir:

 

 

Para melhor visualização do jogo, clique no link a seguir:

 http://nautilus.fis.uc.pt/mn/perfeitos/index.html

Francisco Ismael Reis.

AssinaturaFundoCla 
29/12/2008

sábado, 27 de dezembro de 2008

A Matemática e a Música

Compartilhe na companhia do Pato Donald, esta divertida aula de Matemática e Música.

 

Donald no país da matemágica de Walt Disney.

Veja também as seguintes postagens:

Pitágoras e os números irracionais

Os pitagóricos e os números

segunda-feira, 22 de dezembro de 2008

O tesouro de Bresa

Houve outrora, na Babilônia, um pobre e modesto alfaiate chamado Enedim, homem inteligente e trabalhador, que não perdia a esperança de vir a ser riquíssimo. Como e onde, no entanto, poderia encontrar um tesouro fabuloso e tornar-se assim, rico e poderoso?

bau3 Um dia, parou na porta da sua humilde casa, um velho mercador vindo da Fenícia, que vendia uma infinidade de objetos extravagantes. Por curiosidade, Enedim começou a examinar as bugigangas oferecidas, quando descobriu, entre elas, uma espécie de livro de muitas folhas, onde se viam caracteres estranhos e desconhecidos. Era uma preciosidade aquele livro, afirmava o mercador, e custava apenas três dinares. Era muito dinheiro para o pobre alfaiate, razão pela qual o mercador concordou em vender-lhe o livro por apenas dois dinares.
Logo que ficou sozinho, Enedim tratou de examinar sem demora, o bem que havia adquirido. Qual não foi a sua surpresa quando conseguiu decifrar, na primeira página, a seguinte legenda: "O segredo do tesouro de Bresa". Que tesouro seria esse?

Enedim recordava vagamente de já ter ouvido qualquer referência a isto, mas não se lembrava onde, nem quando.

Mais adiante decifrou: "O tesouro de Bresa, enterrado pelo gênio do mesmo nome entre as montanhas do Harbatol, foi ali esquecido, e ali se acha ainda, até que algum homem esforçado venha encontrá-lo".

Muito interessado, o esforçado tecelão dispôs-se a decifrar todas as páginas daquele livro, para apoderar-se de tão fabuloso tesouro. Mas, as primeiras páginas eram escritas em caracteres de vários povos, o que fez com que Enedim estudasse os hieróglifos egípcios, a língua dos gregos, os dialetos persas e o idioma dos judeus. Em função disso, no final de três anos Enedim deixava a profissão de alfaiate e passava a ser o intérprete do rei, pois não havia na região ninguém que soubesse tantos idiomas estrangeiros. Passou a ganhar mais e a viver numa confortável casa.

Continuando a ler o livro encontrou várias páginas cheias de cálculos, números e figuras. Para entender o que lia, estudou matemática com os calculistas da cidade e, em pouco tempo, tornou-se grande conhecedor das transformações aritméticas. Graças aos novos conhecimentos, calculou, desenhou e construiu uma grande ponte sobre o rio Eufrates, o que fez com que o rei o nomeasse Presidente perfeito da Câmara local.

Ainda por força da leitura do livro, Enedim estudou profundamente as leis e princípios religiosos do seu país, sendo nomeado primeiro-ministro daquele reino, em decorrência do seu vasto conhecimento. Passou a viver em sumptuoso palácio e recebia as visitas dos príncipes mais ricos e poderosos do mundo.

Graças ao seu trabalho e ao seu conhecimento, o reino progrediu rapidamente, trazendo riquezas e alegrias para todo o seu povo. No entanto, ainda não conhecia o segredo de Bresa, apesar de ter lido e relido todas as páginas do livro.

Certa vez, teve a oportunidade de questionar um venerando sacerdote a respeito daquele mistério, que sorrindo esclareceu:

– O tesouro de Bresa já está em seu poder, pois graças ao livro você adquiriu grande saber, que lhe proporcionou os invejáveis bens que possui.
Afinal, Bresa significa "saber" e Harbatol quer dizer "trabalho". Com estudo e trabalho pode o homem conquistar tesouros inimagináveis.

O tesouro de Bresa é o saber, que qualquer homem esforçado pode alcançar, por meio de bons livros, que possibilitam "tesouros encantados" àqueles que se dedicam aos estudos com amor e tenacidade.

Malba Tahan, Os melhores contos.

O número 142857

Se o multiplicamos por 2,o produto é:

142857 x 2 = 285714

Os dígitos que formam o produto são os mesmos do número dado, com uma ordem diferente

Se o multiplicamos por 3, obtemos:

142857 x 3 = 428571

Vamos fazer a multiplicação por 4:

142857 x 4 = 571428

Da multiplicação por 5 resulta:

142857 x 5 = 714285

A multiplicação por 6 é:

142857 x 6 = 857142

Multiplicando-o por 7 chegamos a um resultado curioso:

142857 x 7 = 999999

Se o multiplicamos por 8 o produto é:

142857 x 8 = 1142856

Todos os algarismos do número original aparecem no produto, à exceção do 7, que se decompôs em duas partes: 6 e 1.

Por fim, ao multiplicar por 9 resulta:

142857 x 9 = 1285713

Podemos ver que o único dígito que não aparece é o 4, que aparece decomposto em duas partes: o 1 e o 3.

O número 142857 tem suficientes e relevantes propriedades para ser incluído entre os números mais curiosos que existem.

Existirão outros números como este?

Tirado do livro: "O Homem que Sabia Contar" de Malba Tahan

domingo, 14 de dezembro de 2008

Sobre números primos

 

Número primo é todo número inteiro maior que 1 que somente é divisível por si próprio e pela unidade.

 

Crivo de Eratóstenes A palavra primo, quando nos referimos a números primos, ao contrário do que se possa pensar, não denota parentesco. Sua origem se deve a um antigo conceito numérico dos pitagóricos.

Acredita-se que a noção de número primo tenha sido introduzida por Pitágoras, filósofo e matemático grego que nasceu em Samos por volta do ano 570 a. C. e morreu em Metaponto por volta do ano 497 a.C..

Para os pitagóricos, o número um, ao qual chamavam de unidade (monad, em grego), era o elemento gerador dos demais, que recebiam simplesmente a denominação de número (arithmós, em grego).

Nessa época, os matemáticos gregos dividiam, o que hoje chamamos de números naturais, em três classes:

  • a monad ( ou unidade, ou 1 ).
  • os protói arithmói ( números primos ) ou asynthetói arithmói ( números incompostos ).

são aqueles que não podem ser gerados pelo produto de outros arithmói, como é o caso de: 2, 3, 5, 7, 11, ...

  • os deuterói arithmói ( números secundários ) ou synthetói arithmói ( números compostos ).

são aqueles que são gerados pelo produto de outros arithmói, como é o caso de 4 = 2.2, 6 = 2.3, 8 = 2.4, 9 = 3.3, etc.

 

Em os Elementos de Euclides (300 a.C.) os números primos são definidos de acordo com as idéias apresentadas pelos pitagóricos acerca do assunto.

Eratóstenes  (276 - 194 a.C.) foi um matemático, bibliotecário e astrônomo grego. Dentre suas contribuições, destaca-se um método para a determinação de números primos, que é conhecido como o crivo de Eratóstenes.

Acompanhe, através do exemplo a seguir, com o qual vamos determinar os números primos menores que 120, como funciona o crivo de Eratóstenes.
Antes de mais nada, listamos em uma tabela, em ordem crescente, todos os números naturais de 2 até 120.
O próximo passo consiste em marcar o número 2 como número primo. Eliminamos a seguir todos os números maiores que 2 e múltiplos de 2 (4, 6, 8, ...), que não são primos, porque são números pares.
Os próximos números a serem eliminados da tabela são os múltiplos de 3 maiores que 3 (9,15,21,..); que também não são primos, pois são divisíveis por 3.
Continuando, eliminamos os múltiplos de 5 maiores que 5 e, finalmente, os múltiplos de 7 maiores que 7.
Os números que restarem são todos os números primos menores do que 120.

Confira na tabela a seguir, a aplicação do crivo de Eratóstenes:

No livro De Institutione Arithmética, sobre Teoria dos Números, do romano Boethius (500 d.C), mais conhecido como Boécio, aparece pela primeira vez o termo numerus primus.

Por volta de 1200 d.C. Fibonacci, no seu livro Liber Abacci, prefere a denominação primus a incomposto como era hábito dos árabes, consagrando, dessa maneira, o termo número primo por nós utilizada.

 

Francisco Ismael Reis.

AssinaturaFundoEsc 
14/12/2008

quarta-feira, 10 de dezembro de 2008

A respeito do CPF

 

"Hoje em dia, os nomes já não possuem significado. O que importa são os números: o número da conta, da identidade, do passaporte. São eles que contam."

José Saramago

 

O Cadastro de Pessoas Físicas - CPF é um banco de dados gerenciado pela Secretaria da Receita do Brasil - RFB que armazena informais cadastrais de contribuintes obrigados à inscrição no CPF, ou de cidadãos que se inscreveram voluntariamente.

O CPF de um contribuinte é um número formado por 11 dígitos com o formato:

ABC.DEF.GHI-XY

Nesse número os dois últimos dígitos (XY) são chamados de dígitos verificadores e servem para validar o número de CPF como um todo. Cada um desses dígitos verificadores é obtido em duas etapas a partir de cálculos efetuados nos nove primeiros dígitos do número.

Para tornar mais clara a forma de obtenção de um número de CPF válido, vamos escolher aleatóriamente um número de 9 dígitos, por exemplo, o número 987.654.321, e determinar os dois dígitos verificadores que formarão com os demais um número de CPF válido.

1ª etapa - Cálculo do primeiro dígito verificador (X).

1. Cada um dos 9 dígitos que formam o número escolhido, contados da esquerda para a direita, deverá ser multiplicado, respectivamente, por 10, por 9, por 8, ... , por 2. Veja o quadro a seguir:

clip_image001[19]

2. Efetuamos a soma de todos os resultados obtidos no procedimento anterior:

clip_image001[21]

3. Vamos dividir a soma resultante (390) por 11, considerando somente a parte inteira do quociente, e observar apenas o resto da divisão.

4. Se esse resto for menor que 2, o primeiro dígito verificador será 0 (zero). Caso contrário, subtrai-se de 11 o valor obtido.

No exemplo em que estamos trabalhando o resto é 5, logo o primeiro dígito verificador é:

11 - 5 = 6 ou seja, X = 6

2ª etapa - Cálculo do segundo dígito verificador (Y).

Para calcular o segundo dígito verificador, procederemos de forma parecida com o que fizemos na 1ª etapa, acrescentando ao final dos 9 primeiros dígitos, o primeiro dígito verificador, no nosso exemplo, calculado como 6 (seis).

1. Montamos um quadro semelhante ao anterior, começando a multiplicação de cada dígito por 11, e não por 10, uma vez que temos um dígito a mais nesse número:

image

2. Efetuamos a soma de todos os resultados:

clip_image001[6]

3. Vamos dividir a soma resultante (467) por 11, considerando somente a parte inteira do quociente, e observar apenas o resto da divisão.

4. Se esse resto for menor que 2, o segundo dígito verificador será 0 (zero). Caso contrário, subtrai-se de 11 o valor obtido.

Esse resto, coincidentemente, volta a ser 5, logo o segundo dígito verificador é:

11 - 5 = 6, ou seja, Y = 6

Portanto, o número:

987.656.789-66

representa um número de CPF válido.

 

Francisco Ismael Reis.

AssinaturaFundoCla 
10/12/2008

segunda-feira, 8 de dezembro de 2008

A multiplicação em gelosia

 

A adição e a multiplicação eram efetuadas na Índia de modo muito semelhante ao que usamos hoje. Usavam pequenas lousas com tinta removível branca ou uma tábua coberta de areia ou farinha. Entre os esquemas usados para a multiplicação havia um que é conhecido sob vários nomes: multiplicação em reticulado, multiplicação em gelosia, ou em célula ou em grade. A idéia atrás disso é fácil de perceber no exemplo a seguir, onde multiplicamos 635 por 28.

A multiplicação em gelosia

O multiplicando é colocado acima do reticulado e o multiplicador aparece à direita, como mostrado na figura 1.

Os produtos parciais são colocados nas células quadradas, como podemos ver na figura 2.

Os dígitos nas fileiras diagonais são somados e o produto 17 780 aparece à esquerda e em baixo, de acordo com a figura 3. O único “transporte” necessário na multiplicação em reticulado aparece nas adições finais ao longo das diagonais.

Não se sabe quando ou onde a multiplicação em gelosia apareceu, mas a Índia parece ser a fonte mais provável; foi usada lá pelo menos desde o século XII, de onde parece ter sido levada à China e à Arábia.

Dos árabes passou para a Itália nos séculos XIV e XV e lá o nome gelosia lhe foi associado por causa da semelhança com os gradeados colocados em frente às janelas em Veneza e em outros lugares.

 

Carl B. Boyer, História da Matemática, São Paulo, Edgard Blücher.

Reis, Ismael. Fundamentos da Matemática V6, Editora Moderna, 1996.

Nota: Esta postagem foi motivada por uma conversa que tive hoje (08/12/2008), na sala dos professores, com a amiga e dedicada colega de profissão, a professora Alzira Mizrahi Goldberg.

Related Posts Plugin for WordPress, 

Blogger...